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The copper-catalyzed propargylic substitution reaction has become a powerful synthetic method to pre-
pare the compounds containing the propargylic subunit. Compared with the other transition-metals
applied in the propargylic substitution, copper has many obvious advantages, such as much more inex-
pensive, easier to handle, milder reaction condition, and higher selectivity. This digest summarizes the
recent development in the copper-catalyzed propargylic substitutions with various nitrogen, carbon, oxy-
gen, and sulfur nucleophiles. In addition, the cycloadditions involving the copper-catalyzed propargylic
substitution as the key step are included.
� 2014 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/3.0/).
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Introduction

Propargylic compounds are common motifs in many natural
products, fine chemicals, and synthetic pharmaceuticals, as well
as useful synthetic intermediates in organic synthesis. The presence
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Scheme 1. Cu-catalyzed propargylic amination.
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of the nucleophilic triple bond, accompanied by a fairly acidic ter-
minal acetylenic hydrogen in many cases, make these propargylic
compounds highly potential for a wide variety of transformations.1

The Nicholas reaction,2 a well-known substitution reaction of
propargylic alcohol derivatives with various nucleophiles, repre-
sents one of the most effective methods for the synthesis of a wide
range of propargylic compounds. However, this reaction requires a
stoichiometric amount of toxic Co2(CO)8, which significantly lim-
ited its application. Therefore, the development of a catalytic prop-
argylic substitution becomes a pre-requisite task for organic
chemists. In comparison with the transition-metal-catalyzed
allylic substitution reaction which is one of the most reliable meth-
ods in organic synthesis,3 the catalytic propargylic substitution
reaction has been lagging far behind. To date, the catalytic propar-
gylic substitution reaction was mostly limited to work using Pd,
Cu, Ti, and Ru catalysts,4 and the first catalytic asymmetric version5

occurred until 2003. Among various catalysts used in the propargy-
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Scheme 2. Cu-catalyzed asymmetric propargylic amination.
lic substitution reaction, copper salts display some distinct advan-
tages: (1) low cost, (2) low toxicity, (3) mild reaction condition, (4)
operational simplicity, (5) broad substrate scope, (6) excellent
selectivity. In particular, recent progress in the Cu-catalyzed asym-
metric propargylic substitution further demonstrated its superior-
ity. Although some recent reviews about propargylic substitution
have been reported,4 there are no specific reviews focused on the
copper-catalyzed propargylic substitution reaction. Herein, we
describe recent developments in the emerging field of copper-cat-
alyzed propargylic substitution reactions, classified by the
nucleophiles.

Propargylic substitution using nitrogen nucleophiles

Propargylic amines are versatile building blocks and intermedi-
ates for organic synthesis.6 Transition-metal catalyzed propargylic
substitution using nitrogen nucleophile is one of the most attrac-
tive strategies to synthesize these compounds. In recent years,
the copper-catalyzed propargylic substitutions using nitrogen
nucleophiles have made great progress. Different kinds of cop-
per-catalyzed propargylic aminations, as well as the cycloadditions
with propargylic amination as the key step, have been developed.

Propargylic amination of propargylic esters

In 1960, Hanzel and co-workers developed a propargylic amina-
tion of tertiary propargylic chlorides with various amines.7 It was
found that the copper catalyst (CuCl–Cu) was necessary to achieve
good yields when the aromatic amines were used as the nucleo-
philes. The formation of a more reactive copper acetylide species
was proposed to be responsible for the improved reactivity. In
1994, Murahashi and co-workers developed a highly effective
CuCl-catalyzed propargylic amination of propargylic acetates and
phosphates 1 with various amines 2 under mild conditions
(Scheme 1).8 The reaction was highly regioselective and no allenyl-
amine byproducts were observed. Additionally, a terminal acety-
lenic proton was essential for this copper-catalyzed amination,
and an internal alkyne did not undergo the amination even under
severe conditions. This result suggested a copper–acetylide com-
plex should be formed as the key intermediate. Although still in
the racemic series at this stage, this work sets the stage for an
enantioselective version.

However, it is until 2008, van Maarseveen and Nishibayashi
independently reported the first copper-catalyzed asymmetric
propargylic amination.9,10 These methods provided an efficient
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route to prepare optically active propargylic amines 3 in high
yields and with good enantioselectivities. The major difference
between van Maarseveen’ and Nishibayashi’s methods is the
structure of the chiral ligand. In van Maarseveen’s method, a chiral
2,6-bis(oxazolinyl)pyridine-type ligand (diPh-pybox L1) in
combination with CuI was used as the catalyst, and primary
amines proved to be more suitable nucleophiles (up to 88% ee,
Scheme 2). In comparison, Nishibayashi employed the complex
of CuOTf�1/2C6H5 with an atropisomeric diphosphine ligand
(Cl-MeO-BIPHEP L2) as the catalyst and only secondary amines
worked as suitable nucleophiles (up to 98% ee, Scheme 2).
Nishibayashi and co-workers made an exhaustive research on
the reaction mechanism and proposed a reaction pathway similar
to van Maarseveen’s (Scheme 3).11 The experimental results
revealed that the copper–allenylidene complex should be the key
intermediate. This conclusion is also supported by density func-
tional theory calculations for the model reaction. Here the attack
of the amines to the Cc atom of the copper allenylidene complex
D is the key step in determining both the regio- and stereoselectiv-
ities. This mechanism explains why the reaction requires the use of
propargyl substrates with terminal acetylene.

A transition state of the copper–allenylidene complex with the
chiral ligand (R)-BIPHEP L2 is proposed to account for high enanti-
oselectivity of the reaction (Scheme 4).11 The re-face of the c-car-
bon of the copper–allenylidene complex is open to attack by the
N-methylaniline. The edge-to-face interaction between the car-
bonAhydrogen bond of the substrate and the phenyl group at the
pseudo-equatorial position of (R)-BIPHEP L2 is considered as an
essential factor in achieving high enantioselectivity.

In 2011, Nishibayashi and co-workers realized the copper-cata-
lyzed enantioselective propargylic amination of aliphatic propar-
gylic esters 1, a challenging substrate class, with secondary
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amines 2, in which moderate yields with high enantioselectivities
were achieved in the presence of 5 mol % CuOTf�1/2C6H5/(R)-BINAP
L3 complex (up to 90% ee, Scheme 5).12 The introduction of penta-
fluorobenzoate in place of the acetate group as a leaving group was
found to be necessary to promote the amination of aliphatic prop-
argylic esters with secondary amines. However, primary amines
were less efficient in this catalytic system.

The copper-catalyzed enantioselective amination of non-aro-
matic propargylic esters 1 with primary amines 2 could be realized
with van Maarseveen’s method, in which good yields and high
enantioselectivities were achieved by use of 10 mol % CuI with
Me-pybox L4 (up to 90% ee, Scheme 6).13 Some secondary amines
were also tested, however, only moderate enantioselectivities were
achieved.

In 2012, Hu and co-workers demonstrated that chiral tridentate
P,N,N-ligands, (Sc,Rp)-L5 and (R)-L6, were highly efficient for the
Cu-catalyzed asymmetric propargylic amination of propargylic
acetates 1.14 In the presence of CuCl/(Sc,Rp)-L5 complex, both pri-
mary aromatic amines and secondary amines 2 were found to be
suitable nucleophiles, providing the corresponding propargylic
amines 3 in high yields and with excellent enantioselectivities
(up to 97% ee for secondary amines, and up to 96% ee for primary
amines, Scheme 7). Moreover, in the catalysis of Cu(OAc)2�H2O/(R)-
L6 complex, aliphatic propargylic acetates also served well, provid-
ing the products with good enantioselectivities (Scheme 7). It was
noteworthy that this Cu/P,N,N-ligand catalytic system represents
the first successful example in which both primary and secondary
amines could be used as efficient nucleophiles for the highly enan-
tioselective catalytic propargylic amination of both aliphatic and
aromatic propargylic acetates.

In 2013, Sakamoto and co-workers reported the copper-cata-
lyzed asymmetric propargylic amination of aromatic propargylic
esters 1 with amines 2 using (R)-BICMAP L7 as a chiral ligand, giv-
ing the desired products 3 in good yields (up to 85% yield) and with
moderate to high enantioselectivities (up to 90% ee, Scheme 8).15
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Very recently, Nishibayashi and co-workers disclosed a copper-
catalyzed asymmetric intramolecular propargylic amination of
propargylic acetates 4 bearing a secondary amine moiety at a suit-
able position.16 In the catalysis of CuOTf�1/2C6H6/Pybox (L4 or L8)
complex, a variety of optically active 1-ethynylisoindolines 5 were
obtained in good yields and with high enantioselectivities (up to
98% ee, Scheme 9). They also made a preliminary investigation
on the sequential inter- and intramolecular double propargylic
amination, however, the result was still far from satisfactory
(Scheme 10).

Ring-opening reaction of ethynyl epoxides with amines

In 2009, Nishibayashi and co-workers reported the copper-cat-
alyzed asymmetric ring-opening reaction of ethynyl epoxides 9
with amines 2 catalyzed by Cu(OTf)2/DTBM-MeO-BIPHEP L9 com-
plex. Optically active b-amino alcohols 10 bearing a tertiary carbon
at the a-position of the amine were obtained in high yields with
high enantioselectivities (up to 94% ee, Scheme 11).17 The catalytic
reaction was considered to proceed via copper–allenylidene com-
plexes as the key intermediates. Furthermore, good yields and
excellent enantioselectivities were also observed even in the pres-
ence of only 0.1 mol % of copper catalyst (84% yield, 94% ee,
TON = 840).

Decarboxylative propargylic amination of propargyl
carbamates

Although great advances have been made in propargylic substi-
tution using nitrogen nucleophiles, the development of new strat-
egy for the catalytic synthesis of propargylic amines remains a
highly desirable and challenging task. In 2014, Hu and co-workers
reported a Cu-catalyzed asymmetric decarboxylative propargylic
amination of propargyl carbamates 11 with a tridentate ketimine
P,N,N-ligand L10 (Scheme 12).18 The reaction could be performed
under very mild condition for a broad range of substrates, provid-
ing the corresponding propargylic amines 3 in good yields and
with high enantioselectivities (up to 97% ee). In this method, both
the nucleophile and the electrophile were formed in situ by the
loss of CO2 in catalytic concentration (Scheme 12). This reaction
represents a new and complementary strategy for access to opti-
cally active propargylic amines.

Propargylic amination/cyclization tandem reactions

The catalytic sequential reaction using transition metal com-
plexes have attracted much attention due to the advantage of sim-
plicity and facility in the preparation of complex and useful
compounds. Recently, some cycloaddition reactions based on the
copper-catalyzed propargylic amination have also been developed.
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Scheme 13. Cu-catalyzed asymmetric propargylic amination/cycloaddition tandem
reaction of propargylic acetates with N-(E)-penta-2,4-dienylaniline.
In 2010, Nishibayashi and co-workers reported the copper-
catalyzed asymmetric propargylic amination/[4+2]-cycloaddition
tandem reaction of propargylic acetates 1 with N-(E)-penta-2,4-
dienylaniline 12 to give chiral 1,2-disubstituted tetrahydroisoindole
derivatives 13 in high yields and with high diastereo-/enantiose-
lectivities (up to >30/1 dr, up to 90% ee, Scheme 13).19 This
work is the first example of the copper-catalyzed diastereo- and
enantioselective sequential reaction, in which only a single copper
complex worked as a catalyst to promote both the propargylic
amination and the intramolecular [4+2] cycloaddition reaction.

A proposed reaction pathway is shown in Scheme 14. At first, N-
(E)-2,4-pentadienylaniline 12 might attack the copper acetylide
complex A bearing a cationic c-carbon atom from the re face to give
C with high enantioselectivity. Then, the intramolecular [4+2] cyclo-
addition reaction occurs via the copper acetylide complex D, which
is formed from C and the chiral copper complex. The direct transfor-
mation from B to D without the formation of C as a reactive interme-
diate may also be conceivable in the sequential reactions.

In 2011, Zhan and co-workers described a Cu(OTf)2-catalyzed
tandem reaction of propargylic alcohols 14 with amidine 15 to pro-
vide 2,4-disubstituted or 2,4,6-trisubstituted pyrimidines 16 in
moderate to good yields (up to 91% yield, Scheme 15), which are
important heterocyclic units in pharmaceuticals, agrochemicals,
biologically active molecules, and novel materials.20 The reaction
is proposed to undergo a propargylation/cyclization/oxidation tan-
dem mechanism (Scheme 16). In the initial step, Cu(OTf)2-induced
propargylic amination of propargyl alcohol 14 with benzimida-
mide leads to C. The intramolecular nucleophilic attack of amidine
nitrogen at the Cu-activated triple bond of alkyne produces cyclic
dihydropyrimidine intermediate D (6-endo-dig). Then, the dihy-
dropyrimidine D is aromatized to the pyrimidine ring via the oxi-
dation with air. In this reaction, the Cu(OTf)2 acts as a
bifunctional catalyst, not only does it assist in the leaving of the
hydroxyl group from the propargylic alcohol, furnishing the prop-
argylic cation B, but also activate the triple bond, rendering the
cyclization process more facile.
Propargylic substitution using carbon nucleophiles

The development of new, efficient, and valuable synthetic
methodologies for the direct construction of the carbonAcarbon
bond is a highly important task in organic chemistry. The propar-
gylic substitution using carbon nucleophile offers a straightfor-
ward and efficient route to form the new carbonAcarbon single
bond, whereas synthesizes the compound bearing the carbonAcar-
bon triple bond. In recent years, the copper-catalyzed propargylic
substitutions using carbon nucleophiles have attracted much
attention, and some related cycloadditions have also been
developed.
Ketone enolates or their equivalents as nucleophiles

Propargylic alkylation of enoxysilanes
In 2007, Zhan and co-workers reported a very efficient method

for the synthesis of b-alkynyl ketones 18 by the substitution reac-
tion of propargylic acetates 1 with enoxysilanes 17 in the catalysis
of 1 mol % Cu(OTf)2 (Scheme 17).21 The reaction was completed
rapidly within 5 min under the mild condition. It was noticed that
the steric bulkiness of side chains (R2) in propargylic acetates 1 had
a significant effect on the regioselectivity of the reaction (18 vs 19).
Propargylic acetates 1 bearing the terminal or internal alkyne
group were also tolerated. Furthermore, the substitution reaction
could be followed by a TsOH-catalyzed cyclization without purifi-
cation of the b-alkynyl ketone intermediates, offering a straightfor-
ward synthetic route to polysubstituted furans 20.
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Propargylic alkylation of enamines
In 2009, Hou and co-workers developed the first copper-cata-

lyzed asymmetric propargylic substitution of propargylic acetates
1 with enamines 21 catalyzed by 5 mol % of Cu(CH3CN)4ClO4/(R)-
Cl-MeO-BIPHEP complex (Scheme 18).22 A series of b-ethynyl
ketones 22 were prepared in good yields and with good enantiose-
lectivities (up to 91% ee). The aliphatic enamine derived from
cyclohexanone was also examined, providing the product in 33%
yield with 10:1 dr and 72% ee when a propargylic benzoate instead
of the acetate was used.

Very recently, Hu and co-workers reported a highly diastereo-/
enantioselective copper-catalyzed propargylic alkylation of mor-
pholine-derived acyclic ketone enamines 23 with propargylic
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Scheme 20. Cu-catalyzed asymmetric decarboxylative propargylic alkylation of
propargyl b-ketoesters.
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esters 1 in the presence of a bulky and structurally rigid tridentate
ketamine P,N,N-ligand (S)-L10 to forge two vicinal tertiary stereo-
centers, in which excellent diastereoselectivities (up to >95:5 dr)
and perfect enantioselectivities (up to >99% ee) were obtained for
a wide range of substrates (Scheme 19).23

Decarboxylative propargylic alkylation of propargyl b-
ketoesters

Although some ketone enolate equivalents proved to be suit-
able reagents for catalytic asymmetric propargylic substitutions,
the use of simple ketone enolates as nucleophiles is still very lim-
ited. In 2014, a breakthrough was made by Hu and co-workers.
They developed an intramolecular asymmetric decarboxylative
propargylic alkylation of propargyl b-ketoesters 25 by use of
Cu(CH3CN)4BF4/(S)-L10 (5 mol %) as the catalyst, in which a variety
of b-ethynyl ketones 22 were obtained in good yields and with
high enantioselectivities (up to 98% ee) (Scheme 20).24

In this reaction, both the nucleophile and the electrophile were
formed in situ in catalytic concentration by the loss of CO2, instead
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of the need to prepare preformed enolate equivalents. The nucleo-
philic attack of the enolate to the c-carbon atom of the copper
allenylidene complex should be the key step in determining
stereoselectivity (Scheme 21). This work also represents the first
successful example of the catalytic asymmetric decarboxylative
propargylic alkylation. In addition, the reaction showed to be less
sensitive to the nature of the solvent, and the best reaction solvent
was toluene in terms of enantioselectivity. This result is different
with those observed in the copper-catalyzed enantioselective
propargylic substitution, in which only a polar protic solvent such
as MeOH proved to be suitable.

A copper-catalyzed intermolecular enantioselective decarboxy-
lative propargylic alkylation of propargylic esters 1 with b-keto
acids 26 was subsequently developed by the same group.25 A vari-
ety of b-keto acids 26 with propargylic esters 1 underwent the
decarboxylative propargylic alkylation to give the corresponding
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b-ethynyl ketones 22 in good yields with excellent enantioselectiv-
ities (up to 98% ee, Scheme 22). In comparison to the correspond-
ing intramolecular decarboxylative propargylic alkylation of
propargyl b-ketoesters 25, this method displays some significant
advantages: (1) more readily available substrates; (2) generally
better enantioselectivities; (3) broader substrate scope, especially
for aliphatic propargylic esters.

Propargylic alkylation of aldehydes

Recently, the combination of distinct catalysts for dual activa-
tion of distinct reacting partners has emerged as a new strategy
for developing novel and valuable reactions that are difficult or
impossible by the use of single catalyst.26 In 2011, Nishibayashi
and co-workers reported the asymmetric propargylic alkylation
of propargylic pentafluorobenzoate 1 with aldehydes 27 using a
CuOTf�1/2C6H6/racemic BINAP L3 complex and a chiral secondary
amine L11 as the co-catalyst. The reaction gave propargylic alkyl-
ation products 29 as a mixture of two diastereoisomers in good
yields and with high enantioselectivities (Scheme 23).27 Interest-
ingly, the stereochemistry of BINAP did not affect the enantioselec-
tivity of the alkylation product 29.

In this reaction, copper complex (transition metal catalyst) and
secondary amine L11 (organocatalyst) activated propargylic esters
1 and aldehydes 27, respectively, and both catalysts worked coop-
eratively and simultaneously to promote the propargylic alkylation
enantioselectively (Scheme 24). This work is an extension of the
study of asymmetric propargylic substitution of propargylic alco-
hols with aldehydes using a thiolate-bridged diruthenium complex
and a chiral secondary amine as cocatalysts.28 However, higher
diastereoselectivity but lower catalytic activity was observed in
the copper-catalyzed propargylic alkylation.

Propargylic alkylation of b-dicarbonyl compounds

In 2011, van Maarseveen and co-workers attempted the first
copper-catalyzed asymmetric propargylic substitution of 1-phe-
nyl-2-propynyl acetate with 2,2,5-trimethyl-1,3-dioxane-4,6-
dione, a cyclic derivative of malonate. However, only low enanti-
oselectivity (6% ee) was obtained.13 The development of a catalytic
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compounds.
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system that could catalyze the asymmetric propargylic substitu-
tion in broad substrate spectrum with regard to b-dicarbonyl com-
pounds is therefore highly desirable.

Recently, Hu and co-workers reported the first highly enantio-
selective copper-catalyzed propargylic alkylation of propargylic
acetates 1 with b-diketones 30 by employing the chiral tridentate
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Scheme 28. Cu-catalyzed propargylic alkylation of terminal alkynes.
ketimine P,N,N-ligand (R)-L10. A series of propargylic alkylation
products 29 were obtained in high yields and with excellent
enantioselectivities (up to >99% ee, Scheme 25).29 The catalytic
system was also efficient for cyclic b-ketoesters and cyclic malon-
ate derivatives as nucleophiles. In this reaction, the use of the
bulky and structurally rigid chiral ketimine-type P,N,N-ligand
(R)-L10 was critical to achieve good performance.

Very recently, Wu and co-workers developed a diastereo- and
enantioselective propargylic alkylation of 2-substituted benzofu-
ran-3(2H)-ones 32 with propargylic esters in the catalysis of a cop-
per–pybox complex (Scheme 26).30 A series of 2,2-disubstituted
benzofuran-3(2H)-ones 33 bearing two vicinal chiral centers and
one terminal alkyne functional group were obtained in good to
excellent diastereoselectivities (up to 98:2 dr) and enantioselectiv-
ities (up to 98% ee).

Propargylic substitution of indoles

In 2011, van Maarseveen and co-workers reported a copper-cat-
alyzed asymmetric propargylation of propargylic acetates 1 with
indoles 34 in the presence of diPh-pybox ligand L1 (Scheme 27).13

Indole and N-methylindole were suitable nucleophiles, giving the
3-propargylindoles 35 in high yields (up to 91% yield) and with
excellent enantioselectivities (up to 98% ee). This is different with
the Ru-catalyzed asymmetric propargylation of indoles, in which
the presence of a bulky group such as triisopropylsilyl at the nitro-
gen atom of indoles was essential for achieving high enantioselec-
tivity.31 However, the limited scope of the reaction was examined.

Propargylic substitution of terminal alkynes

1,4-Diynes are traditionally obtained by the nucleophilic substi-
tution of propargyl halides or sulfonates with metal acetylides, in
which large amounts of salt waste are generated simultaneously.32

In 2011, Zhan and co-workers reported a copper-catalyzed propar-
gylic substitution of propargyl alcohols 14 with terminal alkynes
36 using 10 mol % Cu(OTf)2 as the catalyst.33 The reaction could
be finished in 5 min with water as the only byproduct. A range of
propargyl alcohols 14 and terminal alkynes 36 were well tolerated,
and a variety of 1,4-diynes products 37 were obtained in good
yields (up to 87% yield, Scheme 28).

Propargylic trifluoromethylation

The introduction of a trifluoromethyl (CF3) group into organic
molecules has attracted considerable attention since the resulting
+

CuTC (5 mol%)
KF (1.5 equiv)
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60 oC, 20 h39
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Cl
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·

R = 4-CF3C6H4, 75% yield
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Cl
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R = 4-MeC6H4, 79% yield
R = 4-ClC6H4, 81% yield
R = PhCH2CH2, 71% yield

Scheme 29. Cu-catalyzed trifluoromethylation of propargylic chlorides with
trifluoromethyltrimethylsilane.
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Scheme 30. Cu-catalyzed decarboxylative trifluoromethylation of propargyl
bromodifluoroacetates.

O

R

CF3

R

R

CF3

·CF2Br

O

+
40

41b

O CF2Br

O

LnCuLnCuI
NaO CF2Br

O

LnCu CF3

KFKBr+CO2

KF

42

Scheme 31. Proposed catalytic cycle via an activation procedure.

Scheme 33. Mechanism for propargylic alkylation/cycloisomerization tandem
reaction.
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trifluoromethylated compounds are highly promising skeletons in
the field of pharmaceuticals, agrochemicals, and materials.34

Recently, Nishibayashi and co-workers reported the reaction of pri-
mary and secondary propargylic halides 38a–b with trifluorometh-
yltrimethylsilane (CF3SiMe3) 39 in the presence of 5 mol %
copper(I) thiophene-2-carboxylate (CuTC) to give the correspond-
ing trifluoromethylated products 40 and 41a in good to high yields.
This represents the first example on the catalytic trifluoromethyla-
tion of propargylic halides by directly using CF3SiMe3 as a trifluo-
romethylating reagent (Scheme 29).35

The study indicated that the regioselectivity of the reaction was
dictated by the substrate, with primary propargyl chlorides provid-
R1

X
+

Cu(OTf)2 (5 mol %)O

R4R3

O

toluene, reflux
0.5-3 h O

O

R4
R1

R2

O

O

EtO

X = OH 65% yield
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O
X = OH 53% yield
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X = OH 50% yield
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Ph
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R3

Br

X = OH (14) or OAc (1)
R1 = Aryl
R2 = TMS, H, Ph, nBu
R3 = R4 = -(CH2)3-, CH3; or R3 = CH3, R4 = OEt

14 or 1 30 43

Scheme 32. Cu-catalyzed tandem reactions of propargylic alcohols or acetates with
1,3-dicarbonyl compounds.
ing propargyl trifluoromethanes and secondary propargyl chlo-
rides affording trifluoromethylallenes. The authors proposed that
the catalytic reaction should proceed via a pathway involving cat-
ionic propargyl/allenyl-copper complexes as reactive intermedi-
ates, not via an anti-SN20 pathway.

Very recently, Altman and co-workers developed a two-step
copper-catalyzed decarboxylative trifluoromethylation of propar-
gyl bromodifluoroacetates 42 into a mixture of propargyl trifluo-
romethanes 40 and trifluoromethylallenes 41b (Scheme 30).36 In
the reaction, an activation procedure and the use of N,N0-dimethyl-
ethylenediamine (DMEDA) as a ligand significantly improved the
yield of product. The activation procedure presumably served to
convert the pre-catalytic combination of CuI/DMEDA/sodium
bromo(difluoro)acetate (NaO2CCF2Br)/KF into the active catalyst,
(DMEDA)Cu–CF3 (Scheme 31). Moreover, the activation procedure
might circumvent an induction period, during which the substrate
could be destroyed via nonproductive pathways. Since NaO2CCF2Br
participated only in the activation procedure, it was required just
at a substoichiometric amount (25 mol %) in this reaction.
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Scheme 34. Cu-catalyzed asymmetric cycloaddition of b-ketoesters with propar-
gylic acetates.



Scheme 36. Proposed mechanism for [3+3] cycloaddition of propargyl ester with
cyclic enamine.
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Propargylic alkylation/cycloaddition tandem reaction

In 2009, Zhan and co-workers reported a convenient one-pot
propargylic alkylation/cycloisomerization tandem process to con-
struct substituted furans derivatives 43 from 1,3-dicarbonyl com-
pounds 30 and propargylic alcohols 14 or acetates 1 catalyzed by
copper(II) triflate as a bifunctional catalyst in good yields (up to
93% yield, Scheme 32).37 Increased yields were obtained in all cases
when propargylic acetates were used as substrates instead of prop-
argylic alcohols.

The authors proposed the mechanism as outlined in Scheme 33.
Initially, the ionization of propargylic alcohols 14 would lead to
propargylic cation B and the subsequent propargylic substitution
of the enol A gives c-alkynyl ketone D. Coordination of cationic
copper(II) to the alkyne forms the p–alkyne copper complex E
and enhances the electrophilicity of alkyne. Subsequent 5-exo-
dig nucleophilic attack of the hydroxy group on b-carbon of
Cu(II)–alkyne complex E would generate the alkenyl-copper deriv-
ative F. Protonolysis of F affords dihydrofuran G, which then under-
goes isomerization to furan 43.

Since dihydrofurans are widely found in many natural products
and pharmaceutical molecules, and also serve as attractive precur-
sors for an array of organic transformations.38 If the last isomeriza-
tion step of alkylene-2,3-dihydrofurans G in Scheme 33 can be
efficiently interrupted, it would provide a concise access to synthe-
size 2-alkylene-2,3-dihydrofurans. Based on this consideration,
very recently, Hu and co-workers reported the first copper-cata-
lyzed asymmetric formal [3+2] cycloaddition of b-ketoesters 30
with propargylic esters 1 to generate optically active 2,3-hydrofu-
rans 44 bearing the exocyclic C@C bond in high yields and enanti-
oselectivities (up to 97% ee, Scheme 34).39 Bulky and structurally
rigid chiral ketimine-type P,N,N-ligand was critical to achieve good
performance. A range of substitution patterns at the b-ketoesters
30 and propargylic acetates 1 were well tolerated. It was noted that
the reaction worked well for the aliphatic propargylic substrates
when an aliphatic pentafluorobenzoates were used instead of the
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Scheme 35. Cu-catalyzed asymmetric [3+3] cycloaddition of propargyl esters with
cyclic enamines.
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Scheme 38. Cu-catalyzed propargylic etherification of propargylic chlorides with
phenols.
corresponding acetates. In addition, the exocyclic double bond
can be hydrogenated in a highly diastereoselective fashion to give
unusual cis-2,3-dihydrofuran derivatives, which further enhances
the scope of this transformation.

In 2012, Hu and co-workers developed a new Cu-catalyzed
asymmetric [3+3] cycloaddition of propargyl esters 1 with cyclic
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enamines 45 with a combination of Cu(OAc)2�H2O and the chiral
tridentate ferrocenyl P,N,N-ligand (Rc,Sp)-L5 as the catalyst.40

Under mild conditions, perfect endo selectivities (endo/exo >98:2)
and excellent enantioselectivities (up to 98% ee) for endo cycload-
ducts 46 were achieved for a wide range of substrates (Scheme 35).
The mild conditions, broad substrate scope, good yields, and high
diastereo- and enantioselectivities make this process highly useful
in the synthesis of optically active bicyclo[n.3.1] frameworks.

The plausible mechanism is proposed as shown in Scheme 36.
The cyclic enamine Cb attacks at the Cc atom of the copper alleny-
lidene complex, which should be the key step for the stereoselec-
tion. Then, H atom shifts to Cb of the Cu–acetylide complex to
give Cu–vinylidene complex E and subsequent intramolecular
nucleophilic attack of the cyclic enamine Cb at the Ca atom of E
affords alkenyl complex F.

Propargylic substitution of oxygen and sulfur nucleophiles

In comparison with N- and C-nucleophiles, less progress has
been made with O- and S-nucleophiles. In 1994, Godfrey and co-
workers reported the copper-catalyzed propargylic etherification
of propargylic chlorides 38 or esters 1 with phenols 47 to give aryl
1.1-dimethylpropargyl ether 48 in good yields under mild condi-
tions (up to 88% yield, Scheme 37).41 Importantly, the reaction pro-
ceeded regioselectively and no allenic byproducts were observed.

Later, Mann and co-workers also developed the propargylic
etherification of dialkylpropargyl chlorides 38 with phenols 47 in
the present of 2 mol% CuI to give 1.1-dialkylpropargyl ethers 48
in 21–100% yields (Scheme 38).42 The study indicated that phenols
bearing the electron-withdrawing group tended to give higher
yields. Moreover, the resulting propargylic ethers could be readily
converted into 2H-1-benzopyrans 49.

Nicolaou and coworkers applied the copper-catalyzed propar-
gylic etherification in the total synthesis of biologically active com-
pounds 50, tovophyllin B, which possesses a significant inhibitory
activity against Mycobacterium tuberculosis (Scheme 39).43 The
O-propargylation of the readily available phenol 47 with methyl
2-methyl-3-yn-2-yl carbonate in the presence of DBU and the cat-
alytic amount of CuCl2 proceeded smoothly to afford 1,1-dimethyl-
propargyl ether 48, a key intermediate in the total synthesis of
tovophyllin B 50.

In 2008, Huang and co-workers developed a novel copper-cata-
lyzed propargylic etherification reaction of propargylic alcohols 14
with alcohols in the presence of copper(II) bromide with excellent
regioselectivity and high yields under very mild conditions (up to
98% yield, Scheme 40).44 Importantly, thiols were also tolerated
in the reaction.
Conclusions and future outlook

In summary, significant advances have been achieved in the
copper-catalyzed propargylic substitutions over the last two dec-
ades. Diverse nucleophiles such as nitrogen, carbon, oxygen, sulfur
nucleophiles have been successfully applied in the reaction. Many
kinds of propargylic compounds have been prepared in satisfactory
yields, regioselectivities, and enantioselectivities under very mild
conditions. Especially, some carbo- or heterocyclic scaffolds, that
are hard to prepare with conventional methods, could be readily
synthesized by copper-catalyzed propargylic substitution/cycliza-
tion tandem reactions. Although great progress has been achieved,
the Cu-catalyzed propargylic substitution, in particular its asym-
metric version, is still in underdeveloped and full of challenges.
For instances, only a limited number of chiral ligands are found
to be efficient. The scope of the propargylic substrates is narrow,
and no successful asymmetric example has been reported for
either propargylic esters with an internal alkyne moiety or tertiary
propargylic esters. The range of suitable nucleophiles is quite lim-
ited, and O- or S-nucleophiles has never been employed in an
asymmetric reaction. Moreover, the diastereo- and enantioselec-
tive construction of multi-stereogenic centers via the copper-cata-
lyzed asymmetric propargylic substitution remains rarely
explored. It is expected, however, that with a deeper understand-
ing of these reactions, new chiral ligands as well as new strategies
will be developed, and the scope of both the nucleophiles and the
substrates will be expanded in the future.
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